Application

Raman spectroscopy in VIS/NIR

of a rotating sample excited by a CW laser with external modulator (see proof-of principle setup scheme in paper DOI: 10.1039/C9NA00487D open access)

Conditions

• Sample should be pumped only during the time it crosses the laser beam (600 - 60 000rpm)

- repetition rate 10Hz 1kHz (1 100ms period) changing during experiment
- duty cycle 0,7% or larger (constant, independent of rep. rate for a given sample)
- pulse width $7\mu s \sim 1ms$, determined by rep. rate and duty cycle

• External modulation

- fast binary digital (ON/OFF) with a high extinction ratio
- slow power control, at least one of following types (in priority order)
 - by computer (USB, RS232, etc.)
 - analog modulation
 - manual

Requirements

- Laser wavelength (+/- 2 nm): 405, 532, 638, and 785 nm (DPSS or VBG-diode, linearly polarized) main operation wavelengths 405 and 638nm, next 532nm, 785nm only a useful future option
- Insertion losses: ≤ 1dB (≥ 80% diffraction efficiency)
- Polychromatic operation (quote all possible configurations!):
 individual AOM for each laser

and alternatives, e.g.,

# A	UV-Vis-NIR AOM	for 405 / 532 / 638 /7	'85 (a bit worse pei	formance for 785nm)
# B	UV-Vis AOM	for 405 / 532 / 638	+ NIR AOM	for 785
# C	UV AOM	for 405	+ Vis-NIR AOM	for 532 / 638 / 785
# D	UV-Vis AOM	for 405 / 532	+ Vis-NIR AOM	for 638 / 785
# E	UV AOM for 405	+ Vis AOM for 532 /	638 + NIR AOM	for 785

AOTF are usually a bit too slow

PCAOM can be used in two possible configurations

- common combined coaxial input and output beams (Fig.1)
- may be possible too separated input but combined coaxial output beams a kind of backward polychromatic deflector (preferred option to simultaneously directly combine individual laser beams) (Fig.2)
- Digital modulation (common for all wavelengths)

TTL
≤ 1µs (10-90%)
≥ 1000:1 (30dB)
fast, ~10µs interlock

• Laser power control (individual for each wavelengths)

power control range	1-100%, still acceptable option 10-100%
computer control	USB interface (RS232 – possible option)
analog modulation bandwidth	≥ 1Hz
analog modulation control voltage	0-1V, or 0-5V, or 0-10V (either one range)

- Accuracy, induced noise, stability $\leq 1\%$
- Laser beam diameter (TEMoo) ~1mm, 1,5mm max focusing can be an option to reduce switching time but only without deterioration of insertion losses / diffraction efficiency

• Laser power

Notes:

- The supplier should be an authorized sales and service representative of the original manufacturer.
- Warranty: At least one year on the complete system.
- Specify the total price including university / research discounts and sconto discount
- Comments on unique features different from competitor products would be useful

