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Abstract: An all-fiber acousto-optic frequency shifter (AOFS) based on an acousto-optic tunable
filter (AOTF) cascaded with a packaged tapered fiber (TF)-coupled microsphere was proposed
and demonstrated in both theory and experiment. The configuration has the advantages of easy
alignment, robustness, compact size, and low cost, which will improve its further application, such
as in the optical heterodyne detection technique (OHDT).

Keywords: heterodyne; acousto-optic tunable filter; whispering gallery mode

1. Introduction

The optical heterodyne detection technique (OHDT) has the advantages of high
sensitivity, high accuracy, and strong anti-interference ability, and it plays an important role
in fields including fine spectrometry [1], vector hydrophone [2], infrared radar, nanoparticle
detection [3,4], optical communications [5], and so on [6,7]. The key component of the
OHDT is a frequency shifter, which generates the signal light with a small frequency shift
compared to the reference light. Typically, the acousto-optic effect is utilized to realize
this. Compared with optical Bragg cells or integrated surface acoustic wave (SAW)-driven
waveguides [8,9], all-fiber acousto-optic frequency shifters (AOFS) [10–16], especially those
based on a single-mode fiber (SMF), are preferred due to the lower driving power, smaller
frequency shift, and lower cost determined by their all-fiber feature. The acoustic wave
applied to the fiber could be either a longitudinal wave or a flexible wave. A typical
longitudinal acoustic wave was applied to modulate a fiber Bragg grating (FBG) and
induced an all-fiber acousto-optic super-lattice modulation structure [17–20], in which
the input light could be reflected by the modulated narrow side band of the FBG and
be converted to the backward core mode with a frequency shift. To achieve reasonably
good efficiency, the FBG used had to be up to 50 mm, which was difficult to prepare
and therefore expensive [21,22]. An acoustic flexible wave was applied universally in an
all-fiber acoustic-optic structure [23–25] because of its simple structure and high efficiency.
It could convert the core mode to the forward cladding mode with a frequency shift in a
piece of SMF covering a broad spectral range. However, to utilize the cladding mode as
the signal light in OHDT, a mode converter or a mode stripper is necessary. This is the
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key element when utilizing an acoustic flexible wave to construct a frequency shifter. To
date, various methods have been proposed to realize AOFSs, including cascading all-fiber
acousto-optic structures with a long period fiber grating [15], parallel coupled tapered fiber
(TF) [16], or another acousto-optic structure. However, none of these methods is compact
in size. This situation changed with the development of the whispering gallery mode
resonators (WGMRs), whose size was only of hundreds of micrometers. In 2016, mode
conversion between the high-order cladding mode and the core mode was demonstrated
in the C-band [26] and various theories and applications were developed thereafter [27,28].
With a WGMR, compact and low-cost AOFS could be expected.

In this work, we demonstrate an AOFS by cascading a typical all-fiber acousto-optic
tunable filter (AOTF) and a compact mode converter based on a TF-coupled microsphere.
The AOTF provided the frequency shift as it coupled the core mode to the cladding mode,
and the TF-coupled microsphere converted the cladding mode with the frequency shift
back to the core of the SMF. The package process was also developed to make the coupling
stable. Stable beats could be observed in the packaged structure by interfering the signal
light out of the AOFS with the reference light. The AOFS reported in the work was not
only compact and robust but also broad-band applicable due to the tunability of the AOTF
and the dense modes of the whispering gallery mode (WGM) in the microsphere, which
made it much more applicable for future applications.

2. Methods and Configuration

The structure of the proposed AOFS is shown in Figure 1. A typical AOTF is used to
convert the core mode LP01 to the cladding mode LP11, which consists of a piece of stripped
SMF and an acoustic horn with a piece of piezoelectric transducer (PZT) and an acoustic
wave absorber attached at its bottom [29]. When a radio frequency (RF) signal is applied to
the PZT, an acoustic wave will be generated and then magnified by the acoustic horn, and
it will propagate along the stripped SMF. The LP01 mode at the resonant wavelength will
be converted to the cladding mode—typically, the LP11 mode—when the phase matching
condition is satisfied:

λ = (n01 − n11)·Λ (1)

where λ is the resonant central wavelength of AOTF; n01 and n11 are the effective indexes of
the LP01 mode and the LP11 mode, respectively; Λ is the wavelength of the acoustic wave
in the stripped SMF. The typical bandwidth of the mode conversion could be from 0.1 nm
to tens of nanometers according to the acousto-optic interaction length and the diameter of
the SMF [30], but, allowing for the tuning feature of the AOTF, it can easily cover the entire
spectral range of the C-band. The converted LP11 mode will gain a negative frequency shift
f a that is the same as the frequency of the acoustic wave.
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Figure 1. The structure of the proposed all-fiber AOFS. κ1 and κ2 are the coupling loss to the LP01

mode and the LP11 mode of the WGM, respectively, and κ0 is the intrinsic loss of the WGM. The
evolution of the signal light’s frequency is also presented in the figure.
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After the AOTF, there is a TF-coupled WGMR to convert the LP11 mode back to the
LP01 mode. The mechanism is already presented in our previous work [26]. The conversion
efficiency could be presented as below:

D =
4κ1κ2

(κ0 + κ1 + κ2)
2 (2)

where κ1 is the coupling loss to the LP01 mode of the WGM, κ2 is the coupling loss to the
LP11 mode of the WGM, and κ0 is the intrinsic loss of the WGM in the microcavity, which is
determined by the WGM cavity itself—that is, the absorption of the material, the scattering
of the residual inhomogeneity, the curvature and roughness of its surface and so on. The
ideal conversion efficiency could be up to ~100% in a high-Q WGM with the following
condition fulfilled:

κ1 = κ2 � κ0 (3)

Generally speaking, the condition of Equation (3) could be realized easily in a high-Q
WGMR—for example, a fused silica microsphere whose Q value could be up to 108 and κ0 is
usually much smaller than κ1 and κ2. It is possible for us to make κ1 = κ2 in the experiment
by optimizing the coupling position of the WGMR along the two-mode coupling TF as
reported in previous work [26].

In principle, the conversion efficiency could be very high. However, several problems
have to be considered in practice.

One of the most important aspects is that both the conversion efficiency of the AOTF
and the TF-coupled WGMR (microsphere) are polarization-dependent. The coupling loss
in Equations (2) and (3) is dependent on the polarization. It is difficult to modify both the
input polarization of the AOTF and that of the mode converter to their best performance at
the same time, especially the latter, which is determined by the polarization of the LP11
mode. Meanwhile, all the polarizations of the modes, including the WGM, the LP01 mode
and the LP11 mode, can only approximately be treated as linear polarizations. For example,
the LP11 mode actually includes the TE01, TM01 and HE21 modes, which are of different
refractive indices and polarizations. However, since WGM could be approximately treated
as linear polarization, it could convert the fiber mode component of the same polarization,
and the perpendicular components would remain as background at the same time. In
principle, a suitable polarizer could filter the background out. Since OHDT is based on
stable phase modulation, the background will not ruin its application and optimization is
not necessary.

On the other hand, it is beneficial that the conversion of the TF-coupled WGM cavity
is bidirectional. After the mode conversion in a compact AOTF, the LP01 mode may remain
in the fiber core due to the limited acousto-optic (AO) efficiency from either the short AO
interaction length or insufficient driving power to the acoustic transducer. Note that the
bandwidth of a WGM is usually much larger than the frequency shift introduced by the
AOTF; the remaining light of the LP01 mode after AOTF could still interact with the WGM,
and the part of the same polarization as that of the WGM could be converted back to the
LP11 mode via WGM. As a result, the AOTF in the AOFS does not need to be of very high
conversion efficiency and it could be fabricated to be even shorter.

From the above analysis, it is possible for us to utilize a WGMR as a practical mode
converter to build an AOFS for OHDT.

3. Experimental Results

The AOFS consists of an acoustic horn, fiber structure and a WGMR. According to our
previous work, the diameter of the TF plays a crucial role in the construction of the mode
convertor. The fiber structure used in the experiment was prepared based on a piece of
SMF by a two-step tapering method. The first tapering would reduce the diameter of the
fiber down to 55 µm to increase the AO effect [31]. The length of the uniform waist was
approximately 8 cm. Then, the TF was tapered a second time to reduce its waist down to
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approximately 2.5 µm, close to one of its ends, which could be used for mode conversion.
The total length of the structure was around 11 cm. Lastly, the acoustic horn was attached
to the fiber structure to build a typical AOTF, with the horn and the WGMR at each end of
the fiber. The WGMR used in the experiment was a microsphere made of silica, which was
fabricated by fusing one cleaved end of SMF. To make the free spectrum range (FSR) small,
the size of the microsphere should be prepared to be slightly larger—for example, with
a diameter of around 250 µm—in the experiment. Most of the Q values of the WGMs in
the microsphere were up to 107, which would ensure that the conditions of Equation (3)
are valid.

The experimental configuration to demonstrate the proposed AOFS is shown in
Figure 2. A tunable narrow-linewidth laser was followed by an erbium-doped fiber am-
plifier (EDFA), which could not only provide the amplification of the laser but was also
used as a broad-band amplified spontaneous emission (ASE) source to calibrate the AOTF
when the laser was off. After the EDFA, the light was split by a coupler C1. Part of the
light from C1 was led into the AOFS structure via polarization controller PC1. The light
after the AOFS was split again via the coupler C2, which was led into an optical spectrum
analyzer (OSA) and another coupler C3, followed by an optical detector (D) connected
to an oscilloscope (OS), respectively. Note that, at the beginning of the experiment, the
polarization controller PC2 and an attenuator (AT) within the dotted lines in the figure
were not connected so that the OS could be used to calibrate the coupling of the WGM.
This part was connected only when the optical beats were tested in the OS to optimize the
contrast of the beats.
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Figure 2. Experimental configuration to demonstrate the proposed AOFS. EDFA: erbium-doped fiber
amplifier; RF: radio frequency generator; PC1 and PC2: polarization controllers; AT: attenuator; D:
optical detector; OS: oscilloscope; OSA: optical spectral analyzer; C1, C2 and C3: couplers.

At the beginning of the experiment, the microsphere was moved away from the TF
and the laser was off, with only the EDFA on to ensure that the ASE light was functioning.
With the RF signal applied, we could optimize PC1 to obtain a spectral notch of a typical
AOTF in the OSA, which indicated that the light in the resonant LP01 mode was converted
to the LP11 mode. As we changed the frequency of the RF signal, the resonant wavelength
of the notch could be optimized. For example, as the RF signal was tuned from 211 kHz to
250 kHz, the center wavelength had a blue shift from 1583.4 nm to 1509.6 nm, as shown in
Figure 3a. The efficiency of the AOTF was approximately 7 dB. With the laser on and the
RF signal off, the microsphere was moved close to the TF and calibrated with a 3D-nano
stage. The spectrum in the OS is shown as the black line in Figure 3b. With the RF on, the
resonant cladding modes with a frequency shift activated by the AOTF were recoupled
back into the fiber core by the microsphere so that a bandpass spectrum could be observed,
shown as a red line in Figure 3b. The transferring efficiency could be up to around 80%.
Not all the WGM modes could convert the fiber modes with such high efficiency, which
was determined by its effective refractive index, as presented in previous work [26]. Note
that, in order to enhance the conversion efficiency of the frequency-shifted signal, the
polarization was optimized so that there was a slight wavelength difference between the
resonant notches and peaks in the figure. To test the optical beats generated from the
structure, we connected PC2 and AT within the dotted line box, as shown in Figure 2, and
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allowed the laser to work at the resonant wavelength. Optical beats could be observed
in the OS. By adjusting the PC2 and the AT, the visibility of the optical beats could be
optimized. The measured beats in the OS are shown in Figure 3c with unstable amplitude,
which was mainly from the unstable coupling between the TF and the microsphere. To
obtain a stable one, packaging of the microsphere was necessary.
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Figure 3. (a) The tunability of the AOTF. As the driving frequency increased from 211 kHz to
250 kHz, the resonant notch had a blue shift from 1583.4 nm to 1509.6 nm; (b) The transmission of
the TF-coupled microsphere with RF off and on, respectively. The black line was the transmission
spectrum corresponding to WGM without acoustic wave, while the red line shows the resonant
peaks recoupled back into the fiber core with acoustic wave under proper polarization; (c) Optical
beats without package process. The inset is the enlargement of the optical beats.

Therefore, we tested optical beats in a packaged substitute. In the experiment, after
we observed the spectra of the AOTF with the RF signal at 176.5 kHz, the RF signal was
turned off. The specific calibration and package process could be described as four steps, as
shown in Figure 4. First, the microsphere was suspended on a MgF2 substrate supported
by a 3D-nano stage and we began its initial alignment to the TF with the help of the optical
microscope and the 3D translation stage with the laser on, as shown in Figure 4a. Then,
moderate ultraviolet (UV) epoxy was filled in the TF-microsphere coupling region drop
by drop carefully, as shown in Figure 4b. Afterward, with the RF signal on to ensure that
the AOTF was working, we moved the microsphere along the fiber until the bandpass
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spectrum was visible in the OS and then the coupling region was exposed under a UV
lamp for around 120 s, as shown in Figure 4c. Lastly, the transition area of the TF was
covered with UV epoxy and then cured with the UV lamp, as shown in Figure 4d. The
total package area was around 1.9 cm.
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Figure 4. (a–d) Schematic diagram of the packaging process. The purple parts indicate the UV epoxy.
Note that we could calibrate the WGM in the epoxy before it cured because its viscosity was small.

After packaging the microsphere, with the loaded Q of the applied WGM being
7.27 × 105, we could observe stable optical beats in the OS at a suitable optical wavelength,
as shown in Figure 5a. The inset of Figure 5a is the magnification of the beat string. The
frequency spectrum of the optical beats is shown in Figure 5b. Regardless of the direct
current (DC) component, the optical beats were obviously of good signal to noise ratio
and stable enough for OHDT. Note that the lower visibility was mainly from improper
polarization, which will not negatively affect OHDT.
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4. Conclusions

In conclusion, we have demonstrated an all-fiber AOFS based on an AOTF cascaded
with a TF-coupled microsphere. It could be used to generate stable optical beats for
OHDT. There was a DC component in the experiment, and theoretic analysis showed
that it was mainly from improper polarization. With improved alignment or filtering of
the background light with a polarizer, the DC part could be also reduced. In principle,
the device could work within a broad band, not only because of the wide and dense
applicable WGM distribution in a large spectrum range, but also because of the broadband
tunability of the AOTF. Compared to the other methods, it has the advantages of compact
size, robustness, simple alignment, low cost and stable performance, which will benefit its
further applications.
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